
Public

SMART CONTRACT AUDIT REPORT

for

Vanilla Money/MarketMaker Vaults

Prepared By: Xiaomi Huang

PeckShield
April 22, 2025

1/17 PeckShield Audit Report #: 2025-074

contact@peckshield.com

Public

Document Properties

Client VanillaExchange
Title Smart Contract Audit Report
Target Vanilla Money/MarketMaker Vaults
Version 1.0
Author Xuxian Jiang
Auditors Matthew Jiang, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 April 22, 2025 Xuxian Jiang Final Release
1.0-rc April 21, 2024 Xuxian Jiang Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/17 PeckShield Audit Report #: 2025-074

Public

Contents

1 Introduction 4
1.1 About Vanilla Money/MarketMaker Vaults . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Possibly Inconsistent UnStake Events in VanillaMarketMakerVault 11
3.2 Improved Order Creation/Settlement Logic in VanillaMoneyVault 12
3.3 Trust Issue Of Admin Keys . 14

4 Conclusion 16

References 17

3/17 PeckShield Audit Report #: 2025-074

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of
the Vanilla Money/MarketMaker Vaults contracts, we outline in the report our systematic approach
to evaluate potential security issues in the smart contract implementation, expose possible semantic
inconsistencies between smart contract code and design document, and provide additional suggestions
or recommendations for improvement. Our results show that the given version of smart contracts can
be further improved due to the presence of several issues related to either security or performance.
This document outlines our audit results.

1.1 About Vanilla Money/MarketMaker Vaults

This audit covers four specific Vanilla vaults contracts, i.e., VanillaMoneyVault, VanillaMoneyVaultV2,
VanillaMarketMakerVault, and VanillaMarketMakerVaultV2. The first two vaults are mainly used for
users to deposit and withdraw funds, as well as provide two order interfaces for users with BOT_ROLE

to operate. The last two act as a fund storage and token collateral. After the user places an
order, a portion of the user’s deposit will be transferred to VanillaMarketMakeVault(V2). The user’s
collateral can serve as a betting against the platform to earn interest. The basic information of
audited contracts is as follows:

Table 1.1: Basic Information of Audited Contracts

Item Description
Target Vanilla Money/MarketMaker Vaults
Type EVM Smart Contract

Language Solidity
Audit Method Whitebox

Latest Audit Report April 22, 2025

In the following, we show the Git repository of reviewed files and the commit hash values used
in this audit.

4/17 PeckShield Audit Report #: 2025-074

Public

• https://github.com/VanillaDevTeam/PSC-Contract.git (3ddb000)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/VanillaDevTeam/PSC-Contract.git (750cda2)

1.2 About PeckShield

PeckShield Inc. [9] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [8]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

5/17 PeckShield Audit Report #: 2025-074

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/17 PeckShield Audit Report #: 2025-074

Public

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [7], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/17 PeckShield Audit Report #: 2025-074

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/17 PeckShield Audit Report #: 2025-074

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of four Vanilla vaults. During
the first phase of our audit, we study the smart contract source code and run our in-house static
code analyzer through the codebase. The purpose here is to statically identify known coding bugs,
and then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logic, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 2

Low 1

Informational 0

Total 3

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/17 PeckShield Audit Report #: 2025-074

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity
vulnerabilities and 2 low-severity vulnerability.

Table 2.1: Key Vanilla Money/MarketMaker Vaults Audit Findings

ID Severity Title Category Status
PVE-001 Low Possibly Inconsistent UnStake Events

in VanillaMarketMakerVault
Coding Practices Resolved

PVE-002 Medium Improved Order Creation/Settlement
Logic in VanillaMoneyVault

Business Logic Resolved

PVE-003 Medium Trust Issue Of Admin Keys Security Features Mitigated

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/17 PeckShield Audit Report #: 2025-074

Public

3 | Detailed Results

3.1 Possibly Inconsistent UnStake Events in
VanillaMarketMakerVault

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: VanillaMarketMakerVault

• Category: Coding Practices [5]

• CWE subcategory: CWE-1126 [1]

Description

In Ethereum, the event is an indispensable part of a contract and is mainly used to record a variety
of runtime dynamics. In particular, when an event is emitted, it stores the arguments passed in
transaction logs and these logs are made accessible to external analytics and reporting tools. Events

can be emitted in a number of scenarios. One particular case is when system-wide parameters or
settings are being changed. Another case is when tokens are being minted, transferred, or burned.

In the following, we use the VanillaMarketMakerVault contract as an example. This contract
is designed to be a VanillaMarketMakerVault that allows users to stake/unstake their funds. While
examining the events that reflect the unstake operation, we notice the emitted important UnStake

event may not be consistent. In particular, The UnStake event has four parameters and the last
one indicates the respective pledgedFunds amount of the actual amount being transferred out. With
that, the following UnStake event (line 200) in partialUnstake() is incorrect (while the same vent in
unstake() is correct).

177 function partialUnstake(
178 uint256 amount
179) external nonReentrant whenNotPaused {
180 uint256 balances = userInfo[_msgSender ()]. amounts;
181 if (amount == 0 amount > balances) {
182 revert VanillaMarketMakerVault__InvalidAmount ();
183 }

11/17 PeckShield Audit Report #: 2025-074

Public

184 uint256 shares = (amount * userInfo[_msgSender ()]. shares) / balances;
185 uint256 amountToTransfer = calculateAmounts(shares);
186 if (slot1.cumulativeShares < shares)
187 revert VanillaMarketMakerVault__cumulativeSharesInsufficient ();
188 if (assetsManagement () < amountToTransfer)
189 revert VanillaMarketMakerVault__InsufficientVaultBalance ();
190 slot1.pledgedFunds -= amount;
191 slot1.cumulativeShares -= shares;
192 userInfo[_msgSender ()]. shares -= shares;
193 userInfo[_msgSender ()]. amounts -= amount;

195 if (userInfo[_msgSender ()]. amounts == 0) {
196 userNumber -= 1;
197 }

199 IERC20(slot1.assetId).safeTransfer(_msgSender (), amountToTransfer);
200 emit UnStake(
201 _msgSender (),
202 amountToTransfer ,
203 shares ,
204 userInfo[_msgSender ()]. amounts
205);
206 }

Listing 3.1: VanillaMarketMakerVault::partialUnstake()

Recommendation Properly emit the UnStake event when an user intends to unstake the staked
funds.

Status This issue has been fixed in the following commit: 750cda2.

3.2 Improved Order Creation/Settlement Logic in
VanillaMoneyVault

• ID: PVE-002

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: VanillaMoneyVault

• Category: Business Logic [6]

• CWE subcategory: CWE-770 [3]

Description

The VanillaMoneyVault contract allows the privileged bot accounts to place/settle user orders. In the
process of examining the order creation and settlement logic, we notice current implementation may
be improved.

12/17 PeckShield Audit Report #: 2025-074

https://github.com/VanillaDevTeam/PSC-Contract/commit/750cda2

Public

106 function createOrder(
107 CreateOrderParams calldata params
108) external override onlyRole(BOT_ROLE) {
109 if (balances[params.account] < params.amount)
110 revert VanillaMoneyVault__PledgeFundInsufficient ();
111 if (orderInfo[params.orderId]. isExistence)
112 revert VanillaMoneyVault__AlreadyExistOrder(params.orderId);
113 orderInfo[params.orderId] = OrderInfo ({
114 owner: params.account ,
115 isSettlement: false ,
116 isExistence: true ,
117 amount: params.amount
118 });
119 balances[params.account] -= params.amount;
120 if (slot0.platformFeeAccount != address (0)) {
121 if (params.fee > 0) {
122 balances[params.account] -= params.fee;
123 IERC20(slot0.assetId).safeTransfer(
124 slot0.platformFeeAccount ,
125 params.fee
126);
127 emit PlatformCollectFee(slot0.platformFeeAccount , params.fee);
128 }
129 }
130
131 emit CreateOrder(params.account , params.orderId , params);
132 }

Listing 3.2: VanillaMoneyVault::createOrder()

To elaborate, we show above the implementation of the related createOrder() routine. When
creating an order, there is a need to ensure the user funds are sufficient to cover the order amount as
well as possible fee. However, current implementation only validates the coverage of order amount,
not the fee. Also, the given input parameters are defined in CreateOrderParams, which contains a
number of unused member fields and unused ones can be simplified removed.

134 function settleOrder(
135 bytes32 orderId ,
136 uint256 revenue ,
137 uint256 fee
138) public override onlyRole(BOT_ROLE) {
139 if (orderInfo[orderId]. isSettlement)
140 revert VanillaMoneyVault__AlreadySettleOrder(orderId);
141 orderInfo[orderId]. isSettlement = true;
142 address account = orderInfo[orderId].owner;
143 // transfer
144 IERC20(slot0.assetId).safeTransfer(
145 slot0.marketMakerVault ,
146 orderInfo[orderId]. amount
147);
148
149 IVanillaMarketMakerVault(slot0.marketMakerVault).settlement(

13/17 PeckShield Audit Report #: 2025-074

Public

150 account ,
151 revenue + fee
152);
153 balances[account] += revenue;
154 if (fee > 0) {
155 IERC20(slot0.assetId).safeTransfer(slot0.profitSharingAccount , fee);
156 emit ProfitSharingCollectFee(slot0.profitSharingAccount , fee);
157 }
158
159 emit SettleOrder(account , orderId , revenue);
160 }

Listing 3.3: VanillaMoneyVault::settleOrder()

Similarly, the settleOrder() routine in the same contract can also be improved by validating the
given order is a valid one, i.e., require (orderInfo[params.orderId].isExistence);.

Recommendation Revisit the above-mentioned routines to ensure the user orders are properly
created and settled.

Status This issue has been fixed in the following commit: 750cda2.

3.3 Trust Issue Of Admin Keys

• ID: PVE-003

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple Contracts

• Category: Security Features [4]

• CWE subcategory: CWE-287 [2]

Description

In the audited Vanilla vaults, there is a privileged account (with the ADMIN_ROLE/DEFAULT_ADMIN_ROLE

role) that plays a critical role in governing and regulating the vault-wide operations (e.g., assign
BOT roles, pause/unpause the vault, and settle orders). In the following, we show the representative
functions potentially affected by the privilege of the privileged account.

106 function createOrder(
107 CreateOrderParams calldata params
108) external override onlyRole(BOT_ROLE) {
109 ...
110 }
111
112 function settleOrder(
113 bytes32 orderId ,
114 uint256 revenue ,
115 uint256 fee

14/17 PeckShield Audit Report #: 2025-074

https://github.com/VanillaDevTeam/PSC-Contract/commit/750cda2

Public

116) public override onlyRole(BOT_ROLE) {
117 ...
118 }
119 ...

Listing 3.4: Example Privileged Operations in VanillaMoneyVault

We emphasize that the privilege assignment may be necessary and consistent with the protocol
design. However, it is worrisome if the privileged account is not governed by a DAO-like structure.
Note that a compromised account would allow the attacker to modify a number of sensitive vault
parameters, which directly undermines the assumption of the vault design.

In the meantime, the vault contract makes use of the proxy contract to allow for future upgrades.
The upgrade is a privileged operation, which also falls in this trust issue on the admin key.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status The issue has been confirmed and will be mitigated with the use of a multi-sig to
manage the privileged account.

15/17 PeckShield Audit Report #: 2025-074

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of four specific Vanilla vaults contracts,
i.e., VanillaMoneyVault, VanillaMoneyVaultV2, VanillaMarketMakerVault, and VanillaMarketMakerVaultV2

. The first two vaults are mainly used for users to deposit and withdraw funds, as well as provide
two order interfaces for users with BOT_ROLE to operate. The last two act as a fund storage and
token collateral. After the user places an order, a portion of the user’s deposit will be transferred to
VanillaMarketMakeVault(V2). The user’s collateral can serve as a betting against the platform to earn
interest. The current code base is well structured and neatly organized. Those identified issues are
promptly confirmed and addressed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

16/17 PeckShield Audit Report #: 2025-074

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.mitre.

org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-770: Allocation of Resources Without Limits or Throttling. https://cwe.mitre.

org/data/definitions/770.html.

[4] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[5] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[6] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.

[7] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[8] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[9] PeckShield. PeckShield Inc. https://www.peckshield.com.

17/17 PeckShield Audit Report #: 2025-074

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Vanilla Money/MarketMaker Vaults
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Possibly Inconsistent UnStake Events in VanillaMarketMakerVault
	Improved Order Creation/Settlement Logic in VanillaMoneyVault
	Trust Issue Of Admin Keys

	Conclusion
	References

